non-abelian, soluble, monomial
Aliases: C32.3S4, C62.7S3, C3⋊(C3.S4), (C2×C6)⋊2D9, C3.A4⋊2S3, C3.2(C3⋊S4), C22⋊2(C9⋊S3), (C3×C3.A4)⋊3C2, (C2×C6).3(C3⋊S3), SmallGroup(216,94)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C3.A4 — C32.3S4 |
Generators and relations for C32.3S4
G = < a,b,c,d | a6=b6=d2=1, c3=b2, ab=ba, cac-1=a4b3, dad=a2b3, cbc-1=a3b, dbd=a3b2, dcd=b4c2 >
Subgroups: 430 in 58 conjugacy classes, 17 normal (8 characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, D4, C9, C32, Dic3, D6, C2×C6, C2×C6, D9, C3⋊S3, C3×C6, C3⋊D4, C3×C9, C3.A4, C3⋊Dic3, C2×C3⋊S3, C62, C9⋊S3, C3.S4, C32⋊7D4, C3×C3.A4, C32.3S4
Quotients: C1, C2, S3, D9, C3⋊S3, S4, C9⋊S3, C3.S4, C3⋊S4, C32.3S4
Character table of C32.3S4
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4 | 6A | 6B | 6C | 6D | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | |
size | 1 | 3 | 54 | 2 | 2 | 2 | 2 | 54 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ5 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | -1 | -1 | 2 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ8 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | -1 | -1 | 2 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ9 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ10 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | 2 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | 2 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | 2 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ13 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | -1 | -1 | 2 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | -1 | 3 | 3 | 3 | 3 | 1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ17 | 3 | -1 | 1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ18 | 6 | -2 | 0 | -3 | -3 | -3 | 6 | 0 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊S4 |
ρ19 | 6 | -2 | 0 | 6 | -3 | -3 | -3 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
ρ20 | 6 | -2 | 0 | -3 | 6 | -3 | -3 | 0 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
ρ21 | 6 | -2 | 0 | -3 | -3 | 6 | -3 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
(1 18 46 32 38 23)(2 10 47 33 39 24)(3 40 48)(4 12 49 35 41 26)(5 13 50 36 42 27)(6 43 51)(7 15 52 29 44 20)(8 16 53 30 45 21)(9 37 54)(11 25 34)(14 19 28)(17 22 31)
(1 29 4 32 7 35)(2 8 5)(3 31 6 34 9 28)(10 16 13)(11 37 14 40 17 43)(12 38 15 41 18 44)(19 48 22 51 25 54)(20 49 23 52 26 46)(21 27 24)(30 36 33)(39 45 42)(47 53 50)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 36)(7 35)(8 34)(9 33)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 45)(26 44)(27 43)
G:=sub<Sym(54)| (1,18,46,32,38,23)(2,10,47,33,39,24)(3,40,48)(4,12,49,35,41,26)(5,13,50,36,42,27)(6,43,51)(7,15,52,29,44,20)(8,16,53,30,45,21)(9,37,54)(11,25,34)(14,19,28)(17,22,31), (1,29,4,32,7,35)(2,8,5)(3,31,6,34,9,28)(10,16,13)(11,37,14,40,17,43)(12,38,15,41,18,44)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(30,36,33)(39,45,42)(47,53,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,32)(2,31)(3,30)(4,29)(5,28)(6,36)(7,35)(8,34)(9,33)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,45)(26,44)(27,43)>;
G:=Group( (1,18,46,32,38,23)(2,10,47,33,39,24)(3,40,48)(4,12,49,35,41,26)(5,13,50,36,42,27)(6,43,51)(7,15,52,29,44,20)(8,16,53,30,45,21)(9,37,54)(11,25,34)(14,19,28)(17,22,31), (1,29,4,32,7,35)(2,8,5)(3,31,6,34,9,28)(10,16,13)(11,37,14,40,17,43)(12,38,15,41,18,44)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(30,36,33)(39,45,42)(47,53,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,32)(2,31)(3,30)(4,29)(5,28)(6,36)(7,35)(8,34)(9,33)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,45)(26,44)(27,43) );
G=PermutationGroup([[(1,18,46,32,38,23),(2,10,47,33,39,24),(3,40,48),(4,12,49,35,41,26),(5,13,50,36,42,27),(6,43,51),(7,15,52,29,44,20),(8,16,53,30,45,21),(9,37,54),(11,25,34),(14,19,28),(17,22,31)], [(1,29,4,32,7,35),(2,8,5),(3,31,6,34,9,28),(10,16,13),(11,37,14,40,17,43),(12,38,15,41,18,44),(19,48,22,51,25,54),(20,49,23,52,26,46),(21,27,24),(30,36,33),(39,45,42),(47,53,50)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,36),(7,35),(8,34),(9,33),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,45),(26,44),(27,43)]])
C32.3S4 is a maximal subgroup of
S3×C3.S4
C32.3S4 is a maximal quotient of C32.3CSU2(𝔽3) C32.3GL2(𝔽3) C62.10Dic3
Matrix representation of C32.3S4 ►in GL7(𝔽37)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 34 | 0 | 0 | 0 |
0 | 0 | 1 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
1 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
26 | 31 | 0 | 0 | 0 | 0 | 0 |
6 | 20 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 34 | 0 | 0 | 0 |
0 | 0 | 1 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 34 | 0 | 0 | 0 |
0 | 0 | 1 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,36,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36],[26,6,0,0,0,0,0,31,20,0,0,0,0,0,0,0,1,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,36,0] >;
C32.3S4 in GAP, Magma, Sage, TeX
C_3^2._3S_4
% in TeX
G:=Group("C3^2.3S4");
// GroupNames label
G:=SmallGroup(216,94);
// by ID
G=gap.SmallGroup(216,94);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-2,2,265,223,218,867,3244,1630,1949,2927]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^3=b^2,a*b=b*a,c*a*c^-1=a^4*b^3,d*a*d=a^2*b^3,c*b*c^-1=a^3*b,d*b*d=a^3*b^2,d*c*d=b^4*c^2>;
// generators/relations
Export