Copied to
clipboard

G = C32.3S4order 216 = 23·33

2nd non-split extension by C32 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C32.3S4, C62.7S3, C3⋊(C3.S4), (C2×C6)⋊2D9, C3.A42S3, C3.2(C3⋊S4), C222(C9⋊S3), (C3×C3.A4)⋊3C2, (C2×C6).3(C3⋊S3), SmallGroup(216,94)

Series: Derived Chief Lower central Upper central

C1C22C3×C3.A4 — C32.3S4
C1C22C2×C6C62C3×C3.A4 — C32.3S4
C3×C3.A4 — C32.3S4
C1

Generators and relations for C32.3S4
 G = < a,b,c,d | a6=b6=d2=1, c3=b2, ab=ba, cac-1=a4b3, dad=a2b3, cbc-1=a3b, dbd=a3b2, dcd=b4c2 >

Subgroups: 430 in 58 conjugacy classes, 17 normal (8 characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, D4, C9, C32, Dic3, D6, C2×C6, C2×C6, D9, C3⋊S3, C3×C6, C3⋊D4, C3×C9, C3.A4, C3⋊Dic3, C2×C3⋊S3, C62, C9⋊S3, C3.S4, C327D4, C3×C3.A4, C32.3S4
Quotients: C1, C2, S3, D9, C3⋊S3, S4, C9⋊S3, C3.S4, C3⋊S4, C32.3S4

Character table of C32.3S4

 class 12A2B3A3B3C3D46A6B6C6D9A9B9C9D9E9F9G9H9I
 size 13542222546666888888888
ρ1111111111111111111111    trivial
ρ211-11111-11111111111111    linear of order 2
ρ3220222202222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ4220-1-1-120-1-12-12-1-1-1-1-1-122    orthogonal lifted from S3
ρ5220-1-1-120-1-12-1-1-1-1-1222-1-1    orthogonal lifted from S3
ρ6220-1-1-120-1-12-1-1222-1-1-1-1-1    orthogonal lifted from S3
ρ7220-12-1-10-1-1-12ζ989ζ989ζ9792ζ9594ζ9594ζ989ζ9792ζ9792ζ9594    orthogonal lifted from D9
ρ8220-12-1-10-1-1-12ζ9792ζ9792ζ9594ζ989ζ989ζ9792ζ9594ζ9594ζ989    orthogonal lifted from D9
ρ92202-1-1-102-1-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ10220-1-12-10-12-1-1ζ9792ζ989ζ9792ζ9594ζ9792ζ9594ζ989ζ9594ζ989    orthogonal lifted from D9
ρ11220-1-12-10-12-1-1ζ9594ζ9792ζ9594ζ989ζ9594ζ989ζ9792ζ989ζ9792    orthogonal lifted from D9
ρ12220-1-12-10-12-1-1ζ989ζ9594ζ989ζ9792ζ989ζ9792ζ9594ζ9792ζ9594    orthogonal lifted from D9
ρ132202-1-1-102-1-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ142202-1-1-102-1-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ15220-12-1-10-1-1-12ζ9594ζ9594ζ989ζ9792ζ9792ζ9594ζ989ζ989ζ9792    orthogonal lifted from D9
ρ163-1-133331-1-1-1-1000000000    orthogonal lifted from S4
ρ173-113333-1-1-1-1-1000000000    orthogonal lifted from S4
ρ186-20-3-3-36011-21000000000    orthogonal lifted from C3⋊S4
ρ196-206-3-3-30-2111000000000    orthogonal lifted from C3.S4
ρ206-20-36-3-30111-2000000000    orthogonal lifted from C3.S4
ρ216-20-3-36-301-211000000000    orthogonal lifted from C3.S4

Smallest permutation representation of C32.3S4
On 54 points
Generators in S54
(1 18 46 32 38 23)(2 10 47 33 39 24)(3 40 48)(4 12 49 35 41 26)(5 13 50 36 42 27)(6 43 51)(7 15 52 29 44 20)(8 16 53 30 45 21)(9 37 54)(11 25 34)(14 19 28)(17 22 31)
(1 29 4 32 7 35)(2 8 5)(3 31 6 34 9 28)(10 16 13)(11 37 14 40 17 43)(12 38 15 41 18 44)(19 48 22 51 25 54)(20 49 23 52 26 46)(21 27 24)(30 36 33)(39 45 42)(47 53 50)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 36)(7 35)(8 34)(9 33)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 45)(26 44)(27 43)

G:=sub<Sym(54)| (1,18,46,32,38,23)(2,10,47,33,39,24)(3,40,48)(4,12,49,35,41,26)(5,13,50,36,42,27)(6,43,51)(7,15,52,29,44,20)(8,16,53,30,45,21)(9,37,54)(11,25,34)(14,19,28)(17,22,31), (1,29,4,32,7,35)(2,8,5)(3,31,6,34,9,28)(10,16,13)(11,37,14,40,17,43)(12,38,15,41,18,44)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(30,36,33)(39,45,42)(47,53,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,32)(2,31)(3,30)(4,29)(5,28)(6,36)(7,35)(8,34)(9,33)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,45)(26,44)(27,43)>;

G:=Group( (1,18,46,32,38,23)(2,10,47,33,39,24)(3,40,48)(4,12,49,35,41,26)(5,13,50,36,42,27)(6,43,51)(7,15,52,29,44,20)(8,16,53,30,45,21)(9,37,54)(11,25,34)(14,19,28)(17,22,31), (1,29,4,32,7,35)(2,8,5)(3,31,6,34,9,28)(10,16,13)(11,37,14,40,17,43)(12,38,15,41,18,44)(19,48,22,51,25,54)(20,49,23,52,26,46)(21,27,24)(30,36,33)(39,45,42)(47,53,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,32)(2,31)(3,30)(4,29)(5,28)(6,36)(7,35)(8,34)(9,33)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,45)(26,44)(27,43) );

G=PermutationGroup([[(1,18,46,32,38,23),(2,10,47,33,39,24),(3,40,48),(4,12,49,35,41,26),(5,13,50,36,42,27),(6,43,51),(7,15,52,29,44,20),(8,16,53,30,45,21),(9,37,54),(11,25,34),(14,19,28),(17,22,31)], [(1,29,4,32,7,35),(2,8,5),(3,31,6,34,9,28),(10,16,13),(11,37,14,40,17,43),(12,38,15,41,18,44),(19,48,22,51,25,54),(20,49,23,52,26,46),(21,27,24),(30,36,33),(39,45,42),(47,53,50)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,36),(7,35),(8,34),(9,33),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,45),(26,44),(27,43)]])

C32.3S4 is a maximal subgroup of   S3×C3.S4
C32.3S4 is a maximal quotient of   C32.3CSU2(𝔽3)  C32.3GL2(𝔽3)  C62.10Dic3

Matrix representation of C32.3S4 in GL7(𝔽37)

1000000
0100000
00134000
00135000
00003600
00000360
0000001
,
03600000
13600000
0010000
0001000
00003600
0000010
00000036
,
263100000
62000000
00134000
00135000
0000001
0000100
0000010
,
0100000
1000000
00234000
00135000
00003600
00000036
00000360

G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,36,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36],[26,6,0,0,0,0,0,31,20,0,0,0,0,0,0,0,1,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,34,35,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,36,0] >;

C32.3S4 in GAP, Magma, Sage, TeX

C_3^2._3S_4
% in TeX

G:=Group("C3^2.3S4");
// GroupNames label

G:=SmallGroup(216,94);
// by ID

G=gap.SmallGroup(216,94);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,265,223,218,867,3244,1630,1949,2927]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^3=b^2,a*b=b*a,c*a*c^-1=a^4*b^3,d*a*d=a^2*b^3,c*b*c^-1=a^3*b,d*b*d=a^3*b^2,d*c*d=b^4*c^2>;
// generators/relations

Export

Character table of C32.3S4 in TeX

׿
×
𝔽